MEAM 5200 : Pick and Place Challenge

Renu Reddy Kasala, Raima Sen, Charlie Drazba, Benjamin Abt

I. INTRODUCTION

The objective of the final project was to design a
robust solution to enable the Franka Emika Panda
arm to perform the task of Pick and Place in a
fast and safe manner. While we primarily aimed
to achieve as many points as we could, we also
noted the importance of conducting safe trajectory
planning of the manipulator arm to enable colli-
sion free movement in a busy environment. The
following report presents a complete strategy and
mathematical derivation for this task, along with a
detailed analysis with different test cases that were
conducted on simulation and on hardware.

II. METHOD
A. Strategy for the Competition

In order to achieve a high score, the goal was
to maximize points according to : Points =
Valuex Altitude, where the value for static blocks
was 10 and that of dynamic blocks was 20. A few
important factors influenced this objective such as :
(a) Number of blocks stacked (b) Value of the block
stacked (c) Optimal trajectory that minimizes time
taken between different configurations (d) Stacked
structure design We came up with several different
strategies to incorporate the above factors, but tak-
ing into account the various design considerations,
we adopted the following sequence of decisions to
successfully achieve the task :

1) At the start of 3 minutes, the manipulator arm
shall perceive the turntable from a “dynamic
home” position and estimate the pose of the
dynamic blocks. It should then attempt to
grab a dynamic block. There are 3 such
attempts made in the beginning, after which
it breaks out of the dynamic block loop.

2) The manipulator arm should then move to
a “static home” position directly above the
table where the static blocks are placed and
perceive the poses of these static blocks. The
arm should then iteratively pick each static

block and place it on the goal table with the
correct orientation to avoid toppling. The loop
breaks when all 4 static blocks are stacked.
3) Finally in the remaining time, the arm goes
back to the “dynamic home” position and at-
tempts to grab the remaining dynamic blocks.
On the day of the final competition, we reduced the
attempt to grab dynamic blocks in the beginning to
a single attempt since at the start of 3 minutes the
turn table is undisturbed and the poses of dynamic
blocks is the most deterministic. While we were
almost always sure that we would be able to pick
and stack all 4 static blocks, we decided to pick
some of the dynamic blocks first since it had a
higher value, although our dynamic block picking
strategy was more time intensive. This is a tradeoff
we considered while designing our strategy. We also
initially tried to make a pyramid out of the picked
blocks to maximize the points, but on further testing
we noted that the robot gripper would sometimes
collide with the previously placed blocks on the
goal table, which would lead to a software stop
during hardware testing.

B. Perception

The input to the perception module is a list
of AprilTag tuples (tag name, tag pose) obtained
directly from the camera sensor. Therefore, the
tag pose (transformation matrix) is always in the
camera frame. In order to utilize this information
for the Pick and Place task, the following steps were

adopted:
Given:
o HE 0 (obtained from
detector.get._ H_ee_camera())
To find:

o« H gﬁfk (pose of the block in robot base frame)
Now, using forward kinematics, the transformation
matrix H%%%¢ can be obtained by using DH param-
eters.

P = B HHSHIHAEHE (1)

Hbase

camera

— HggseHee

camera

2)

Using the H%%5¢ and the pose obtained from

camera’s detector.get_detections() Hy7"*", we get
base __ rrbase camera

Hblock - HcameraHblock (3)

Using the transformation of the blocks in Base
frame, we then call the IK solver to reconfigure
the robot pose to grab the dynamic/static blocks.

C. Inverse Kinematic Solver

After obtaining the blocks’ pose data from the
camera sensor, the manipulator arm should move
towards the block in order to grab it. For this,
we initially implemented an analytical solver based
on [3]. However, this solution was limited to the
assumption that joint 5 is unconstrained. There-
fore we devised a gradient descent-based Inverse
Kinematic solver that retrieved the desired joint
angle configurations in an iterative manner, given
the current and target homogenous transformations
w.r.t the base frame. The time taken by the solver to
arrive at a solution ranged from 0.5 to 11 seconds.
The following algorithm was used:

Algorithm 1 Algorithm for IK

Input: target transformation, current joint configu-
ration
Output: final joint configuration ¢
Initialize ¢ = qq
while error > tolerance && iter < maxiter do
calculate error e between current and target
position 00(q) — o
calculate gradient J”e where J is the linear
velocity Jacobian J,
calculate q step Ag = —aJ e
update ¢ = q + Agq
if (error < tolerance && ¢ € jointlimits)
then
break
end if
end while
return ¢

Hyperparameter Tuning : We primarily tuned 2
hyperparameters : learning rate (o) and conver-
gence threshold (o). Having a very low learning
rate leads to slow convergence to the goal joint
angles. A high learning rate may cause overshoot

Fig. 3: Static home position

from the minima. So tuning the learning rate was
very crucial. We tried different approaches with
the gradient descent and after thorough analysis
we used Step function-based gradient descent on
IK, where if the convergence threshold is achieved
(end effector is very close to the goal), the learning
rate drops by 30%. This radically improved the
convergence speed to the goal with 4 being the
lowest number of iterations for convergence.

Jacobian : The Jacobian matrix of the Franka
panda arm for a given configuration is a 6 x 7
matrix. We used only the linear velocity Jacobian
(Jy) 3 x 7 matrix. This allowed us to accurately
determine the final positional configuration to reach
the blocks. This strategy proved to be sufficient
for grasping static blocks but it was insufficient
for dynamic blocks. The following section covers
orientation filtering to align the end effector with
the orientation of the block.

D. Orientation Filtering and Tracking

In order to align the robot end effector with
the orientation of the static or dynamic block and
grasp from the top, we calculated the euler angles
after the IK solver achieved the target position. The
following equations were used :

Rijock = Hilor: 3, 3] @)
It was noted that although the AprilTags were
present on all faces of the block, the orientation of
the block frame was such that the z axis of the block
frame was not always facing upwards to the table.
This was handled by simply reordering the columns
of RZ;’O“”C@k as per Right-Hand Rule. Additionally, the
end effector frame should be aligned but inverted
by 1800 with the new z-axis of the block so that
the grasping occurs vertically from top. In this way
we obtain the filtered rotation matrix that the end
effectorshould achieve. The following functional
representation portrays this filtering :

(filtered) RYS. = invertZ (reorder((raw)RESS))

)
The angles obtained from IK solver giurger are
further passed through the Forward Kinematics
algorithm to obtain Hposition_target-

Hposition_target = FK(qmrget) (6)
Rposition_target = Hposition_target[: 37 : 3] @)
Now we get the difference between
(filtered)Rb3s and Rposition_target USING
the following equation :
. b T
RCT’TOT = (fthered)Rb?cfcekRposition_target (8)

Using R, We obtain the euler angles by using
this algorithm:

Algorithm 2 Pseudocode for Euler angle calcula-
tion
Input: R, with elements Ri;, Ri2 ...
Output: euler angles 1,8, ¢
if (R31 75 :|:1) then
91 = —asin(R31)
92 =T — 91
Y1 = atan2(R3z/cosb1, Raz/cosb)
19 = atan2(Rsz/cosba, R33/cosbs)
()
()

01 = atan2(Ra1 /cosby, R11/cosb,

¢ = atan2(Ra1/cosba, Ri1/cosby
else

¢ = anything; can set to 0

if R31 = —1 then

0=m/2
w = ¢ + atanQ(ng, R13)
else
0=—m/2
Y = —¢ + atan2(—Ry2, —Ri13)
end if
end if
return v, 0, ¢

The euler angles obtained are used to change
q1,q2and g3 since the first 3 joint angles are re-
sponsible for the orientation of the end effector.
Although we implemented this on the robot for
orientation tracking, we noted that the end effector
would still sometimes wrongly collide with the
block or handle the block from corners, leading
to an unstable grip. We were unable to debug this
entirely, however, on some attempts, the orientation
of the end effector would align in a perfect manner
with the block.

E. Trajectory Planning

As an initial strategy, we were planning to use
off-the-shelf algorithms like A-star or RRT. How-
ever, we noted that a simple strategy derived from
Artificial Potential Fields would suffice for the
given challenge. Since there was no obstacle or
busy environment, we ignored the likelihood of the
robot hitting nearby blocks. We also observed that
methods like A-star although provided good trajec-
tories, the solution generation time was extremely
slow, which would have affected our competition
run time. Once the IK solver and orientation filter

modules were implemented, we used them sequen-
tially along with applying Forward Kinematic on
a few hard-coded strategic waypoints to conduct
the entire trajectory planning for dynamic and static
blocks. A detailed implementation strategy for both
static and dynamic blocks is provided in section H
and section L.

E Gripping

Once we obtain the desired @goq for
static/dynamic block using the IK solver and
orientation filtering, the next goal is to grasp
the block. Using the following steps, a block is
grasped :

1) We use arm.exec_gripper_cmd(pos, force)
to open the gripper first. Here the pos is the
distance between the 2 ends of the gripper
which we set to 0.7m (any value greater than
the width of the block which is 0.05m) and
force is set to 0.

2) We then use arm.safe_move_to_position(q)
to move the arm to gy, configuration.

3) Then we use arm.exec_gripper_cmd(pos,
force) to close the gripper to a width of 0.05m
and force of 70N on the block.

4) After picking the block, the arm moves
upwards to an intermediary waypoint
quwp between the source table and goal
table. This is done again using the
arm.safe_move_to_position(q) function.

G. Stacking

The stacking/dropping module consists of the
following steps:

1) For each block to be stacked, we keep a track
of a position at a safe distance above the pile
from which we drop the block from. This is
a running height.

2) From the intermediary waypoint gy
the arm moves to this position using
arm.safe_move_to_position(q) function.
This is a running height that gets
incrementally updated by the width of
the block (0.05 meters).

3) We open the gripper to drop the block us-
ing the arm.exec_gripper_cmd(pos, force)
function where gripper width is 0.7m and
force is O.

4) After stacking the current block, the arm
continues picking blocks.

H. Dynamic Blocks

In our approach to handling the acquiring of
dynamic blocks in the lab/competition, we used the
below strategy:

1) From the start position, go to
”Dynamic Home” position using
arm.safe_move_to_position(q). “Dynamic

Home” is a set of joint angle values that
were hard coded. This configuration acts
as the observation configuration to view all
dynamic blocks on the turn table from either
the red and blue side.

start_position = [-0.01779206, -0.76012354,
0.01978261, -2.34205014, 0.02984053,
1.54119353+7/2, 0.75344866]

The following dynamic home observation
configuration is when we are on the red side,
dynamic_home = [n/2, -0.76012354,
0.01978261, -2.34205014, 0.02984053,
1.54119353+7/4, 0.75344866]

2) From this configuration, all the dynamic
blocks on the turn table are visible. We
estimate the velocity of the turn table using
the following equations :
Hee (obtained

camera
detector.get_H_ee_camera())

base __ rybase 7l 172 173 r74 175 176
Hee _Hl H2H3H4H5H6Hee

from

©))

Hbase (10)

camera

_ Hé)ézseHee

camera

After this, we obtain the first time stamp
t1 using Python time. At this time stamp
t, Hﬁggﬁd is calculated using the following

equations,
base __ base camera
Hblock: - HcameraHblock (1 1)
world __ world rrbase
Hblock — *tbase Hblock (12)

From H{;ggg,id we get the position data P; of
the block at time stamp ¢;. At a subsequent
time stamp to the same data is sampled. We
can call this position data P». Using P, P
and dt = ty — t1, we get the velocity of the
turn table using the following set of equations

— /2 2
rp = xP1+yP1

(13)

3)

4)

5)

6)

7

8)

rp, = \/xé + y%,Q (14)
- rp, + TP, (15)
2
L= (zp, —xp)*+ (yr, —yp)? (16)
2r2 — L
0= arccos(rzT) (17)

To obtain a better estimate of the velocity,
we collect # for a number of blocks that are
visible by the camera and take the average of
0. Finally, velocity is expressed as,

0

VZ&

After estimating the velocity of the turn table,
we conducted several trials to check the time
taken by IK solver to converge to a solution.
This value varied from as low as 0.5 seconds
to a maximum of 11 seconds. We additionally
measured the time taken by the arm to move
from the "Dynamic Home” position to one
of the dynamic blocks. This was roughly
5 seconds on the simulation. After multiple
rounds of testing, we arrived at an upper
bound of estimation time to be 16.7 seconds.
This value was hard coded.

Now after having an estimate of the turn table
velocity and trajectory time period, we open
the gripper.

Based on all the observed blocks, we get

world
Hblockww

We predict the future pose of all the observed
blocks (pose attained by different blocks after
16.7 seconds). For this, we use the following
equations,

(18)

0 =Vdt (19)
cosf —sinf 0 0O
sinf cosf 0 O

1}0bl€ = 0 O 1 1 (2())
0 0 0 1

Héjz}gglé(j‘luture = EableHnggéfu7r (21)

We obtain the H¥orld

) blockjuture
ase
HblOCkfuture

Among all the obtained future positions of

now in base frame

9)

10)

11)

In

that is closest to the base of the robot by sim-
ple Euclidean distance between the base of

the robot and the last column of H. z?l%i% .
future

We then use the IK solver to achieve
gl‘ffjcfume configuration from the "Dynamic

Home” position. This retrieved set of joint
angles is qgoal

The gripping module from section F is called
and the robot arm moves to an intermediary
waypoint in order to avoid collision with the
goal table.

Next, the stacking module from section G is
called and the arm stacks the dynamic block
and then goes back to the observation position
(dynamic home position).

Dynamic
Home
Open gripper

Estimate blocks
future position
based on turn
table velocity

2

Estimated time +
IK to traverse to
block location

Feedback from
end-effectot?

NO—|

Repeat for the
next dynamic
block

A

Yes

¥

Move to way
point 1

R

Move to
goal/drop off
location

!

Place the
dynamic block

Fig. 4: Dynamic block stacking strategy

1. Static Blocks

our approach to handling the acquiring of

static blocks in the lab/competition, we used the

different dynamic blocks, we find the block below strategy:

1) From the start position, go to
”Static Home” position using
arm.safe_move_to_position(q). Similar

to "Dynamic Home”, ”Static Home” is a set
of joint angle values that were hard coded as
as the observation configuration to view all
static blocks on the source table from either
the red and blue side.

start_position = [-0.01779206, -0.76012354,
0.01978261, -2.34205014, 0.02984053,
1.54119353+7/2, 0.75344866]

The following static home observation
configuration is when we are on the red side,
static_home = [-0.30, 0.05, 0.1, -1.5, 0.1,
1.5, 0.784]

2) From this configuration, all the static blocks
on the turn table are visible.

3) We iterate over each of the observed static
blocks one by one. Using H, gﬂf‘c‘i and current
joint angles we use the IK solver to retrieve
9goal

4) It was observed that the IK solver converges
faster for static blocks as compared to dy-
namic blocks.

5) The gripping module from section F is called
and the robot arm moves to an intermediary
waypoint in order to avoid collision with the
goal table.

6) Next, the stacking module from section G is
called and the arm stacks the static block with
a running height and then goes back to the
observation position (static home position).

Figure 5 shows a block diagram that portrays the
strategy adopted for static blocks.

J. Code Structure

The code implements the above functionalities in
a modular fashion

1) calculateFK.py is the Forward Kinematic~
module

2) position_ik.py is the gradient descent base:
Inverse Kinematics solver

3) calJacobian.py is the Jacobian matrix calcu
lator

4) dynamic_block_estimation.py is the modul
for detecting and grasping dynamic blocks

5) euler_angle_calc.py is orientation filtering
module

Static Home |e#—————
Open gripper

IK to traverse to
block location

Move to way
point 1

!

Move to
goal/drop off

location

— T

Place the static
block

Repeat for all
static blocks

Fig. 5: Static block stacking strategy

In the code, we first initialize the required ho-
mogenous transformation matrices for both the
red and blue sides. These are the H%'?, HYole,
static_home, dynamic_home and intermediary way-
points for static and dynamic blocks.

Next, in the code we attempt to stack (x=3) dy-
namic blocks first, which takes about 45 seconds
to run on hardware. After this in phase 2, all 4
static blocks are stacked iteratively. The time taken
by phase 2 is about 65 seconds. Finally, for the
remaining time, 20 attempts are made to grab the
remaining dynamic blocks from the turn table and
stack them on the goal table. A running height is
maintained in the code to keep a track of the height
of the end effector from the last block placed on the
tower.

Phase 3 Phase 1
Stack the remaining Stacking Stack the first “x” dynamic
dynamic blocks blocks
Phase 2

Stack all four static blocks

Fig. 6: Overall stacking Strategy

ITII. EVALUATION

The evaluation process was divided into 3 broad
stages :

A. Analytical Evaluation

1) Inverse Kinematics:

a) Analytical Inverse Kinematics: As stated
previously, the analytical inverse kinematics ap-
proach was first attempted as per [3]. To evaluate
the correctness of this approach, random joint an-
gles that were within the joint limits were gener-
ated, and then placed into our forward kinematics
(FK) solver. The output of this FK solver (H, é’gse)
was then placed into the analytical IK solver. The
solver we had initially implemented from [3] ex-
plained 2 versions. One was a generalized solver
which would provide a joint angle set of 6 so-
lutions each time. The second version proved to
be more relevant to our evaluation, which was a
case-consistent IK solver. The case-consistent IK
solver generated the same set of joint angles for
the given 2 parameters - Target transformation and
current joint angles. While this implementation was
straightforward and consistently gave the correct
solutions for joints 4,5,6,7, the overall results we
obtained from the analytical approach were subpar,
due to some potential bug that we were unable
to debug. After many days spent on testing it
was determined that a pivot to gradient IK was
necessary.

b) Evaluation of the gradient descent based
IK: We tried different approaches with the gradient
descent:

o Constant learning rate approach:
Testing was done via generating randomized
joint angles (within joint limits) and generating
the FK position and orientation. This was then
plugged back into the IK solver and results
were compared to that of the original joint
angles. Joint angles that were returned which
were not the same as the original ones were
plugged into FK, to determine if the combi-
nations could yield the correct end effector
position and orientation. This approach did
not work well because the learning was either
too large that it bounced off the solution or
it was too small the it took long time to
converge. In order to converge quickly without

TABLE I: Learning Rate Comparison

Learning Rate Iterations to converge
Constant LR >500

Adaptive LR 60-100

Step LR 4-84

overshooting we experimented with adaptive
learning rate.

o Adaptive learning rate approach:
We tuned the learning rate such that it takes
larger steps initially and then takes smaller
steps as it gets closer to the global optimum.
But this approach led local minima (which is
not optimal). Testing was done similarly to that
done in the constant learning rate approach.

o Learning rate based on Step function:
Since there was no obstacle in the environ-
ment, we used a large learning to converge
quickly, but when the error did not seem to
reduce below a set threshold, it indicated that
the gripper was close to the goal transforma-
tion. This is when we would set the learning
rate to a lower value (decrease of 30%). This
approach worked fairly well with our model.
Again, the testing of the correctness of re-
turned values is the same as that mentioned
in the constant learning rate approach.

Parameters tuned : learning rate

B. Simulation Testing

We quantized the simulation tests to smaller
subtasks.
Orientation Filtering :
The motivation behind this sub-task is to get
a stable grip on the block being picked. This
is possible when the end effector orients itself
according to each block it plans to pick. In this
way, the gripper always grasps the block on two
opposite flat surfaces ensuring a firm grip.
In simulation, we extensively tested our solution
for this sub-task for different orientations of the
blocks. We ran multiple instances of our simulation
for both Team Red and Team Blue but our solution
passed only on cases when the block faces were
slightly parallel to the table. In environments
where the blocks were largely oriented about the
table’s z-axis, the gripper would either have an
unstable grip as it would grip the block from the

corners. On other occasions, the IK solver would
take longer to converge, therefore increasing the
computation time. However this filtering method
performed fairly well for static blocks in most
testing environments we saw on the simulation.
For dynamic blocks, the performance of this
filtering method was worse due to the probabilisti
orientation of the dynamic blocks.

Correct location on Rewards Table :

After having gripped a block in the rigl
orientation, we moved on to the task of placin
it in a suitable location on the reward table. A
stable base ensures a stable stack. Hence, it was
important to stack each block at the same location
and in the same orientation. We tested this multiple
times in simulation. We tuned the (a) drop height
and (b) stack location. We also did multiple runs
to hard code the best initial seed value for our IK
Solver, to avoid it failing to find a path from the
intermediary waypoints to the reward table.

While our solution worked well in simulation, we
realized that the drop height and stack location
didn’t perfectly translate onto the hardware. After
tuning those parameters to work on the Franka
Panda arm in the lab, our solution worked every
time.

Dynamic Block Stacking:

We ran multiple instances of our simulation for
both Team Red and Team Blue for dynamic block
stacking. During this evaluation we noted that the
time to converge to an IK solution for the solver
and the time taken to move from the dynamic
home position to one of the dynamic blocks was
roughly 16.7 seconds. Additionally, it was during
the testing of the dynamic blocks on simulation
that we were able to fine-tune the “dynamic
home” position which was a crucial first step in
order to observe all the dynamic blocks. The initial
tests we ran did not have a dynamic intermediary
way point that the robot arm must traverse through
to place the block on the rewards table. This would
sometimes lead to the block colliding with the
rewards table and eventually falling off the grip
of the end effector. In order to curb this, we
introduced an intermediate waypoint. Although
this increased the stacking time by a small percent,

we had to make this trade-off in order to ensure
that if a dynamic block was gripped, the end
effector or the environment do not interfere with
the gripped block.

Fig. 7: Simulation testing: Dynamic block stacking
on blue side

Static Block Stacking :

Similar to dynamic block simulation testing, we
ran multiple instances of our simulation for both
Team Red and Team Blue for static block stacking.
We noticed here that the time taken to pick a
static block was roughly 10 seconds when the
block was placed parallel to the edges of the table.
However, this convergence and picking time would
increase to 45 seconds whenever the orientation
of the block was highly rotated about the table’s
z-axis. This was potentially due to a bug in our
orientation filtering method. In the simulation all
the static blocks were picked in all the different
environments we tested them in. Other parameters
that we fine-tuned through static block simulation
testing were : ”’static home” position, running
height to place the static block on the tower, static
intermediate waypoint, and correct location on
the rewards table.

C. Hardware Testing

Dynamic Block Stacking :
When testing on hardware in the lab, we first
confirmed the velocity of the turn table by timing
one rotation of the table around the center. The
estimated velocity was 3.6 degrees/sec, which was
almost a match with the one estimated through
the camera sensor (3.68 degrees/sec). However,
we were unable to successfully grasp the dynamic
block due to a repetitive error where the gripper
was horizontally offset by a constant value from
the dynamic blocks close to the circumference of
the turn table. This error seemed resolvable and

Fig. 8: Simulation testing: Static block stacking :
Blue team

Fig. 9: Simulation testing: Static block stacking :
Red team

no such error was observed during simulation. The
robot arm would also very efficiently calculate the
IK solution and converge to a dynamic block in
the estimated time of 16.7 seconds. However, we
could not resolve this constant error due to a lack
of time and the unavailability of sufficient robot
lab timings before the competition.

Static Block Stacking :

When testing on hardware in the lab, we were
able to grasp the static blocks almost every time,
despite the orientation bug. Our observation is that
it was mostly because of the frictional gripper
material that worked to our advantage. The running
height estimate on simulation was also tuned for
the hardware. The IK solver was surprisingly
way faster on hardware than on simulation. We
were able to stack all 4 static blocks in under 60
seconds.

Fig. 10: Hardware testing: Static block stacking on
blue side

IV. ANALYSIS

Collision-free path planning is crucial given that
the robot is supposed to operate in an environment
that is not entirely static, i.e., it has dynamic
obstacles. Although the expected environment is
not going to change very quickly it is essential
to plan the path in order to ensure that the in-
teractions between the robot and the surroundings
are completely collision-free and safe. Initially, we
considered using a Potential Field planner or other
off-the-shelf methods like RRT and A-star. While
RRT method solved for the paths fast, it did not
always yield in optimal paths. A-star on the other

Fig. 11: Hardware testing: Static block stacked on
red side

hand, generated optimal trajectories but the time
taken to solve the trajectory was high. Since we
were timed for 3 minutes, it was crucial to have a
fast and accurate IK solver which led us to adopt a
gradient-based solver with modifications.

A. IK Static Collision

From all of our testing and continuous tuning, it
is clear that the end effector orientation was able to
stack blocks consistently. Although we were satis-
fied with this metric, an analysis on the orientation
of the IK orientation is necessary. With respect
to static blocks, the IK solver had a preference
for blocks 'more square’ with the surface of the
table, meaning that the sides were parallel with the
surface of the table. Although this was the case,
we were still able to pick up blocks not in this
alignment due to the fact that the pressure of the
closing end effector helped to actively rotate the
blocks into an orientation that made them easy to
grasp. Therefore, this proved to be a non-issue.

A bigger issue that we faced was the fact that the
IK struggled to orient the end effector so that it’s
Z-axis was pointing along the Z-axis of the base
frame. Generally, we found that the end effector
tilted slightly forward, meaning that its Z-axis was
pointing back towards itself. Examples of this can
be seen in Fig. 7 and Fig. 10. In some testing
situations, when the static blocks were placed close
to each other and robot was going to pick up a
block closer to itself, there would be a collision
between the camera and the static block which sat
behind the block the end effector was going to grab.
During our second round of the final competition,

10

this occurred, and we were compelled to go through
a hardware stop.

Via close analysis of the code, we believe there
were two reasons for such issues. First, in the calcu-
lation of the error between the current position and
orientation versus the goal position and orientation
of the end effector, there was no consideration for
orientation. Secondly, in the gradient incremental
step, we used a linear velocity jacobian, but there
was no accountability for the angular jacobian.
Essentially, our IK solver only converged to the
correct position each time. Although this model was
intentional, it was not optimal for picking dynamic
blocks that were always changing their orientations.

To fully eliminate the issue of self collision with
close static blocks, a strategy of going for the blocks
furthest away from the end effector, then going
for those closest was considered. Therefore, the tilt
of the end effector had no chance of collision, as
the blocks that previously caused collision were
to be picked up first. Although this solution was
decided on after competition, it was found that we
could consistently pick up the static blocks without
collision.

B. Missing Dynamic Block

While working with dynamic blocks, we found
that sometimes the end effector was in the incorrect
position radially, to where we wanted it. This was
one of the few errors that we found when moving
from software to hardware. This was most likely
due to compounding errors from several sources
in the dynamic block-stacking pipeline. The first
source of error could be from inaccurately estimat-
ing the turntable velocity. We doubt that this is the
case as we evaluated the efficacy of this method on
the hardware via timing the turntable by hand, and
comparing the results to that calculated.

Therefore, we think that the error was associated
with determining the poses of the dynamic blocks
which when combined with the uncertainty in the
time it actually takes the arm to reach the predicted
destination, caused the end effector to miss the
block. The assumption is that the arm will reach
the target destination at exactly the predetermined
time in the future, but there is variability in the
time it takes the arm to move. To account for this,
the uncertainty in the time it takes IK to run was

accounted for by waiting for a time that was longer
than the known upper bound on the IK run time.

C. Overall Competition Performance

As a team, we are satisfied with our competition
performance but know we could have done better.
Had corrections to the dynamic blocks been done
earlier, few more hardware testing hours been avail-
able, and had we strategized which stack blocks
to grab first, we believe that we could have gone
further in the competition. Nonetheless, we were
able to stack both dynamic and static blocks and
are happy with that metric.

V. INSIGHTS GAINED FROM THIS PROJECT

o This final project enabled us put all the mod-
ules(Forward kinematics, Inverse kinematics,
Velocity IK and FK, Potential fields planning)
learnt throughout the semester into practice.
It was amazing to see how all the models fit
together in a coherent matter.

This project justifies what was mentioned way
earlier in the lab, that is:

— A system that does not work in simulation
will not work in hardware.
— A system that worked in simulation may
not work in hardware.
It was fun and informational to see the strate-
gies implemented by different teams. We got to
know how different teams focused on different
areas - one focusing on sweeping the blocks
off the turn table, while one focused to stack
the dynamic first in the hope of grabbing them
before their opponents, while the rest focused
to implement the safe-static block stacking
approach.

VI. RESULTS AND DISCUSSION

Evaluation Criteria:
Time < 3 mins:
The time taken to pick and stack the 4 static blocks
should be less than 3 minutes. This is because the
competition runs for 3 minutes and stacking static
blocks should be done well within that time.
Number of static blocks stacked:
The number of static blocks the robot is able to
stack. Ideally, it should be able to stack all of the
the 4 static blocks.

11

TABLE II: Results of Static and Dynamic Block
Stacking

Trial envi- | Number of | % of static | % of
ronment trials cubes dynamic
stacked cubes
stacked
Simulation 50 100 80
Lab 2 90 0

TABLE III: Final Competition Performance

Match Number Number Score Time
of static | of
blocks dynamic
stacked blocks
stacked
1 2 0 1000 3 mins
2 1 0 250 3 mins

Number of dynamic block stacked:

The number of dynamic blocks the robot arm is
able to pick.

Table 2 details the success rate we achieved in
stacking dynamic and static blocks in both simula-
tion environment and on hardware. Table 3 shows
the final rollout of our performance on the day of
the final competition. On the first match, we lost
45 seconds to grasp dynamic blocks in the first
phase of our strategy of grasping 3 dynamic blocks.
We still managed to stack 3 static blocks after that,
therefore indicating our IK solver was quite fast.
For the second match, we reduced the attempt to
grasp dynamic blocks to just 1. The remaining time
was devoted to grabbing static blocks. Unfortu-
nately, the camera collided with one of the static
blocks which compelled us to undergo a software
stop. We debugged this issue after the competition
by planning the trajectory such that the robot first
grasps the static blocks closer to the robot operator
and then proceeds to grasps the blocks behind them.

Links to videos : Link 1 Link 2

https://youtu.be/p0JNyX4dsdw
https://youtu.be/QSbKmG5FO2Y

(1]

(2]

(3]

(4]

REFERENCES

Hutchinson, Seth A. and Mathukumalli Vidyasagar.
“Robot modeling and control / Mark W. Spong, Seth
Hutchinson, M. Vidyasagar.” (2006).

Siciliano, Bruno and Sciavicco, Lorenzo and Luigi, Vil-
lani and Oriolo, Giuseppe. (2011). Robotics: Modelling,
Planning and Control.

He, Yanhao Liu, Steven. (2021). Analytical Inverse Kine-
matics for Franka Emika Panda - a Geometrical Solver for
7-DOF Manipulators with Unconventional Design. 194-
199. 10.1109/ICCMA54375.2021.9646185.
arXiv:2202.07869v3 [cs.RO] 29 Aug 2022

12

	Introduction
	Method
	Strategy for the Competition
	Perception
	Inverse Kinematic Solver
	Orientation Filtering and Tracking
	Trajectory Planning
	Gripping
	Stacking
	Dynamic Blocks
	Static Blocks
	Code Structure

	Evaluation
	Analytical Evaluation
	Inverse Kinematics

	Simulation Testing
	Hardware Testing

	Analysis
	IK Static Collision
	Missing Dynamic Block
	Overall Competition Performance

	Insights gained from this project
	Results and Discussion
	References

