
Quotation Detection on RiQuA Dataset

Team Members:

• Alex Feng; Email: ahfeng@seas.upenn.edu

• Renu Reddy Kasala; Email: renu1@seas.upenn.edu

• Anisha Singrodia; Email: singroa@seas.upenn.edu

home pod: gargantuan-tortoise

Abstract

Quotation detection is an important processing step in a variety of applications in machine learning, including
generative applications like audiobook or script generation and classification applications such as automated
fact checking. Quotation detection can be challenging since most words are not significantly more likely to
be inside or outside of a quotation, so a quotation detection model needs to have some understanding of
the context surrounding words. In this project, we experiment with various models for quotation detection,
focusing on methods that do not require excessive feature engineering. We evaluate a simple most common
tag baseline, a number of supervised models trained on BERT [3] embeddings, and a fine-tuned BERT model,
and we find that BERT is able to embed the context around each token to significantly improve performance
over the baseline.

1 Motivation

Identifying quotations and attributing them to speakers has various applications, including assigning appro-
priate voices to characters in audiobook generation and creating scripts based on novels [2]. Quotations and
the context surrounding them can provide pertinent information about actors and their interactions, and
direct quotations, especially when paired with contextual information, can be a valuable source of training
data for expressive speech synthesis.

2 Related Work

In their paper ”A Neural-Network-Based Approach to Identifying Speakers in Novels” [2], Chen et al. for-
mulate speaker identification as a scoring task and build a network based on BERT [3] to score candidates.
They define an instance as a sequence of sentences, consisting of a quote to be attributed and context before
and after the quote. Their approach also takes a list of names and aliases of characters and assumes that at
least one alias of the true speaker appears in the context. The model first finds the nearest mention of an
alias of each candidate to the quote. Then, for each such candidate, the sentences containing the mention
and the quote, and all sentences in between, are used as input to BERT to obtain representations of the
candidate, context, and quote sentence. These representations are then scored by a Multi-Layer Perceptron
for each candidate. The authors also propose an algorithm to detect and revise two-party conversations,
which the model struggles with due to the overlap in context among densely packed quotes. Using this
approach, they achieve state-of-the-art performance, significantly improving over the baseline using manual
features.

In their paper ”Quotation Detection and Classification with a Corpus-Agnostic Model” [4], Papay and
Padó implement a corpus-agnostic neural model for quotation detection and evaluate it on three corpora

1



(PARC3, STOP, RWG) that vary in language, text genre, and structural assumptions. The model shows
reasonable performance while operating on corpora substantially differing in form of text genre, annotation
scheme, and theoretical assumptions. They have deployed a neural architecture Neural Quotation Detection
(NQD), with the goal of modeling the quotations in all three corpora: The Penn Attribution Relation(PARC)
Corpus, Speech, Thought, and Writing Presentation corpus (STOP), and The Redewiedergabe (’reported
speech’) corpus (RWG). NQD frames quotation prediction as token classification problem, classifying each
token as either beginning a quotation (BEGIN), ending a quotation (END), or neither (NEITHER). The
model architecture comprises a 2-layer bi-LSTM network, with the outputs of the second bi-LSTM feeding
into a 3-class softmax classifier. Thus, the model takes token sequences as input and produces a sequence
of token labels. As the corpora does not contain test sets, they used 10-fold cross validation to evaluate our
model, using 8 folds for training, 1 for development, as 1 for testing. To compare model with state-of-the-art,
precision, recall, and F1 in this setting for PARC3, STOP and RWG had been reported. The results on
the three corpora could not out-perform the state-of-the-art, but approximates it closely despite the lack of
corpus-specific tuning.

Papay and Padó went on to release their own dataset ”RiQuA: A Corpus of Rich Quotation Annotation for
English Literary Text” [5], which consists of excerpts from 11 19th century English literary works, annotated
with information on speaker, addressee, and cue word, if present. The texts are annotated using Brat Rapid
Annotation Tool to mark spans that contain a quotation, speaker, addressee, or cue word, along with relation
information to link quotations with the corresponding context. The texts were annotated independently by
two separate annotators and then merged by a third, more senior annotator. The corpus contains a total of
5963 quotations, most of which are direct. The vast majority of quotations have marked spearkers.

3 Data Set

RiQuA, Rich Quotation Annotations is a corpus that provides quotations for English literary text. RiQuA
dataset consists of 15 excerpts from 11 works of 19th century English novels by 6 authors annotated with
quotation, entity, and cue word spans as well as corresponding relationships. Some of the works include Jane
Austen’s ”Emma”, Anton Chekhov’s ”The Lady with the Dog” and Mark Twain’s ”The Adventures of Tom
Sawyer”.

We use the RiQuA [5] dataset, which consists of:

• Percentage of quotation labelled words in the entire text: 33.94 %

• Percentage of entity labelled words in the entire text: 1.67 %

• Percentage of cue labelled words in the entire text: 0.89 %

We can see that it is a very sparse dataset where 63.5% of text is not annotated as either Quotation, Cue or
Entity.

To tokenize using BERT tokenizer we need to convert our text in BERT supported input - CONLL for-
mat :

• Assigned each token a tag denoting whether it is the beginning of a span, inside a span, or outside
to get the supported format. Like shown in Figure 1, we formatted our data such that the beginning
and intermediate quotation words are marked with prefix B- and I- respectively. Similarly the cue and
entity words are also converted. The unlabelled words are annotated as O.

2



Figure 1: Excerpt from Jane Austen’s book titled ”Emma” on the left and corresponding Quotation, Cue,
Entity detection on the right

• Text is passed into a pretrained BERT model sentence by sentence, and the hidden states of the final
layers are summed and saved as a contextualized embedding for each token.

• These embeddings, paired with the labels, are then used for supervised learning methods such as K
Nearest Neighbors and Logistic Regression, and Naive Bayes. We also fine-tuned the pre-trained BERT
model designed for token classification on our data directly to utilize the model for classification.

• One example of Annotation can be seen below:

Figure 2: Annotation example: 1

In this example, Quotation, Cue and Entity are annotated as shown in the figure and ”playfully” is
being annotated as ’0’ as it doesn’t belong to either class. It is evident that most of the cue words are
adjacent to the quotation, either cue comes just before the quotation or just after it but it’s not the
case always.

Figure 3: Annotation example: 2

Also, sometimes, cue words comes between two quotations. For example in Figure 4, Annotation ex-
ample 3, an excerpt from Jane Austen’s book Emma is correctly identified as quotation, cue and entity
irrespective of the position of cue with respect to the quote.

3



Figure 4: Annotation example: 3

4 Exploratory Data Analysis (EDA)

In our data analysis, we do the following:

• Word Cloud for whole text to see what all words are appearing and what are some most frequent words

Figure 5: Word cloud for whole text

• Word Cloud for Quotations tokens to see what all words are appearing as quotations and how frequently
they appears.

Figure 6: Quotation word cloud

• Word Cloud for Cue tokens to see what all words are appearing as Cues and how frequent. We saw
that some of the most common cues used are said, asked, replied.

4



Figure 7: Cue word cloud

Some of the Cues are ”said”, ”said,”, ”saying” which are similar to each other but appears as differ-
ent cues in annotation data. To study further about their similarities we plotted their word2Vec vectors.

Figure 8: Cue words Embedding Vectors

5



We can see that similar cue words like: said, asked, saying, answered can be seen very close to each
other.

• Word Cloud for Entity tokens to see what all words are appearing as Entities. One thing to be noted
is that some of the entities includes ”she”, ”he”, ”them” etc as annotated in the dataset.

Figure 9: Entity word cloud

5 Problem Formulation

We formulate the problem as a token classification problem, where each token is assigned a tag denoting
whether it is the beginning of a span, inside of a span, or outside of a span. Under this formulation, we
can take in some amount of text as an input, tokenize the text, and then predict a classification for each
token. We choose this as a simple baseline that illustrates how single words do not contain much signal as
to whether or not they are likely to be inside of a quotation.

6 Methods

6.1 Most Common Tag method

Our first baseline involves tokenizing the data and classifying each token in the unseen validation and test
sets with the most common tag for that token in the training set, with previously unseen tokens classified
as untagged. We utilize huggingface’s transformers [6] to implement this.

6.2 BERT Embedding Methods

We utilized a pre-trained BERT [3] model to extract context-aware embeddings to use as features for su-
pervised learning. These embeddings are extracted from the final layers of the BERT model when passed a
sentence as input, and they include some representation of each token’s meaning and role in the sentence.

6.2.1 BERT Embedding and KNN

We used K nearest neighbors over our BERT embedding and solved it as a multi-classification problem using
sci-kit learn package: sklearn.neighbors.KNeighborsClassifier. We chose KNN as our second baseline since
it does not require any optimization and is simple to set up.

6.2.2 BERT Embedding and Naive Bayes

We used Gaussian Naive Bayes method over our BERT embedding because similar to KNN, it does not
require optimization and only needs to fit the data to be able to predict.

6



6.2.3 BERT Embedding and Logistic Regression

We used logistic regression method over our BERT embedding and solved it as a multi-classification problem
using sci-kit learn package: sklearn.linear model.LogisticRegression. We chose logistic regression as a more
robust model to take advantage of the BERT embeddings. Since utilizing a logistic regression model on
features extracted from the hidden layers of a BERTmodel is similar to adding another layer to a BERTmodel
with frozen weights, we thought that Logistic Regression would be able to approximate the performance of
a deep neural network with fewer resources needed to train.

6.3 Finetuned BERT

We also fine-tune a BERT model on our data. This model is initialized using weights from a pre-trained
model, and is further trained for five epochs on our data. This allows the model to make adjustments to its
weights to better specialize for our task and data. For this task, we process our data into CoNLL format
and modify an existing notebook1 for BERT classification of CoNLL data.

7 Experiments and Results

We find that, as expected, the most common tag has some success in identifying cue words but fails spectac-
ularly at identifying quotations, and the BERT-based models that are able to capture more context perform
better. The fine-tuned model performs the best, with an F1 score of .75 both on quotations and overall,
falling a bit short of the state-of-the-art of around .85. KNN and Naive Bayes both significantly outper-
formed the most common tag baseline but still fell far short of the finetuned model, achieving F1 scores of
.20 and .23 on quotations in the test set, respectively. The Logistic Regression model, however, was able
to approach the performance of the finetuned model, reaching .65 F1 on quotations in the test set. Our F1
scores for each model are listed in Table 1, with more detailed results available in Appendix A.

Table 1: F1 Scores

Model
Val F1 Test F1
Cue Entity Quotation O Avg Cue Entity Quotation O Avg

Most Common Tag 0.72 0.13 0.01 0.37 0.20 0.72 0.11 0.01 0.33 0.24
BERT KNN 0.85 0.45 0.31 0.51 0.43 0.82 0.44 0.20 0.42 0.33
BERT Logistic Regression 0.88 0.62 0.65 0.74 0.74 0.88 0.62 0.65 0.74 0.70
BERT Naive Bayes 0.44 0.17 0.22 5103 0.46 0.52 0.16 0.23 0.55 0.55
BERT Finetune 0.89 0.70 0.85 - 0.81 0.88 0.67 0.75 - 0.75

8 Conclusion and Discussion

Overall, our results are in line with expectations, with the baseline performing the worst by far, and the
finetuned model performing the best. The vast gap in performance between the baseline and even simple
models like KNN illustrates the need for context in a task like quotation detection. Logistic Regression is
able to perform fairly well, which makes sense since it is similar to adding a fully-connected layer on top of a
pretrained BERT model with frozen weights. Still, this is an encouraging result, showing that it is possible
to achieve markedly increased performance over the baselines without changing any weights in the BERT
model, requiring fewer computational resources than a full finetune.

8.1 Error Analysis

Mistakes that the finetuned model makes include:

• Prematurely starting or ending a quotation at a sentence separation

1https://github.com/chnsh/BERT-NER-CoNLL

7



Figure 10: Labelled data Vs Number of words

• Classifying things surrounded by quotation marks as quotations even when they are not

Of these errors, the first is the most common, and it is likely caused by the fact that BERT takes in input
one sentence at a time, so the previous context is lost when moving to the next sentence. This limitation
is far more prevalent in quotation detection than in other token classification tags such as Named Entity
Recognition since quotation spans can be very long and often encompass multiple sentences. This could
potentially be addressed by preserving some representation of previous sentences or by utilizing a large
language model with a longer context window, such as a GPT [1] flavor. Another approach could be to have
a two-stage prediction process, where a fine-tuned BERT model provides intermediate predictions which are
used as features by a non-fixed-length sequence model such as a Hidden Markov Model or Recurrent Neural
Network. The second error is likely an overfit on quotation marks, as they by far the most prevalent indicator
of direct quotations. A possible direction for future work is to remove punctuation entirely and analyze the
effects on performance.

8



A Additional Results

BERT KNN
Test Data Validation Data
Precision Recall F1-score Support Precision Recall F1-score Support

Cue 0.81 0.83 0.82 162 0.87 0.82 0.85 280
Entity 0.51 0.38 0.44 319 0.52 0.39 0.45 475
Quotation 0.15 0.29 0.20 3805 0.25 0.42 0.31 4860
O 0.48 0.37 0.42 3994 0.56 0.47 0.51 5103
Micro avg 0.27 0.34 0.30 8280 0.37 0.45 0.41 10718
Macro avg 0.49 0.47 0.47 8280 0.55 0.53 0.53 10718
Weighted avg 0.34 0.34 0.33 8280 0.43 0.45 0.43 10718

BERT Logistic Regression
Test Data Validation Data
Precision Recall F1-score Support Precision Recall F1-score Support

Cue 0.84 0.83 0.84 162 0.91 0.86 0.88 280
Entity 0.70 0.53 0.60 319 0.71 0.55 0.62 475
Quotation 0.52 0.64 0.57 3805 0.60 0.70 0.65 4860
O 0.75 0.67 0.71 3994 0.78 0.71 0.74 5103
Micro avg 0.62 0.65 0.64 8280 0.69 0.70 0.69 10718
Macro avg 0.70 0.67 0.68 8280 0.75 0.70 0.72 10718
Weighted avg 0.64 0.65 0.64 8280 0.70 0.70 0.70 10718

BERT Naive Bayes
Test Data Validation Data
Precision Recall F1-score Support Precision Recall F1-score Support

Cue 0.39 0.78 0.52 162 0.33 0.65 0.44 280
Entity 0.09 0.76 0.16 319 0.09 0.78 0.17 475
Quotation 0.19 0.29 0.23 3805 0.19 0.27 0.22 4860
O 0.54 0.55 0.55 3994 0.44 0.48 0.46 5103
Micro avg 0.29 0.44 0.35 8280 0.25 0.40 0.31 10718
Macro avg 0.30 0.59 0.37 8280 0.26 0.54 0.32 10718
Weighted avg 0.36 0.44 0.39 8280 0.31 0.40 0.34 10718

9



References

[1] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners, 2020.

[2] Yue Chen, Zhen-Hua Ling, and Qing-Feng Liu. A Neural-Network-Based Approach to Identifying Speak-
ers in Novels. In Interspeech 2021, pages 4114–4118. ISCA, August 2021.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding, 2018.

[4] Institute for Natural Language Processing, University of Stuttgart, Germany, Sean
Papay, and Sebastian PadÃ3. QuotationDetectionandClassificationwithaCorpus −
AgnosticModel. InProceedings−NaturalLanguageProcessinginaDeepLearningWorld, pages888 −
−894.IncomaLtd., Shoumen,Bulgaria,October2019.

[5] Sean Papay and Sebastian PadÃ3.RiQuA : ACorpusofRichQuotationAnnotationforEnglishLiteraryText.page 7.

[6] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, RÃ©mi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art natural language
processing, 2019.

10


